The origins and limits of metal-graphene junction resistance.
نویسندگان
چکیده
A high-quality junction between graphene and metallic contacts is crucial in the creation of high-performance graphene transistors. In an ideal metal-graphene junction, the contact resistance is determined solely by the number of conduction modes in graphene. However, as yet, measurements of contact resistance have been inconsistent, and the factors that determine the contact resistance remain unclear. Here, we report that the contact resistance in a palladium-graphene junction exhibits an anomalous temperature dependence, dropping significantly as temperature decreases to a value of just 110 ± 20 Ω µm at 6 K, which is two to three times the minimum achievable resistance. Using a combination of experiment and theory we show that this behaviour results from carrier transport in graphene under the palladium contact. At low temperature, the carrier mean free path exceeds the palladium-graphene coupling length, leading to nearly ballistic transport with a transfer efficiency of ~75%. As the temperature increases, this carrier transport becomes less ballistic, resulting in a considerable reduction in efficiency.
منابع مشابه
رسانایی تونلی در اتصال گرافینی نرمال- عایق- ابررسانا با ساختار قرص کاربینو
We study tunneling conductance of a graphene based normal metal-insulator-superconductor (NIS) junction with Corbino disk structure. Solving Dirac-Bogolioubov- De Gennes (DBdG) equation in different regions of the junction and employing scattering approach we obtain normal and Andreev reflection coefficients of the junction. Using Blonder-Tinkham-Klapwijk (BTK) formula we calculate tunneling co...
متن کاملHigh Photocurrent in Gated Graphene–Silicon Hybrid Photodiodes
Graphene/silicon (G/Si) heterojunction based devices have been demonstrated as high responsivity photodetectors that are potentially compatible with semiconductor technology. Such G/Si Schottky junction diodes are typically in parallel with gated G/silicon dioxide (SiO2)/Si areas, where the graphene is contacted. Here, we utilize scanning photocurrent measurements to investigate the spatial dis...
متن کاملSimulation of IR Detector at Communication Window of 1550nm based on Graphene
In this paper, photodetection properties of a Graphene-based device at the third telecommunication window have been reported. The structure of the device is a Graphene-silicon Schottky junction which has been simulated in the form of an infrared photodetector. Graphene has specific electrical and optical properties which makes this material a good candidate for optoelectronic applications. Phot...
متن کاملExtraction of Graphene-Titanium Contact Resistances using Transfer Length Measurement and a Curve-Fit Method
Graphene-metal contact resistance limits the performance of graphene-based electrical devices. In this work, we have fabricated both graphene field-effect transistors (GFET) and transfer length measurement (TLM) test devices with titanium contacts. The purpose of this work is to compare the contact resistances that can be numerically extracted from the GFETs and measured from the TLM structures...
متن کاملStabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points.
Carbon-supported precious metal catalysts are widely used in heterogeneous catalysis and electrocatalysis, and enhancement of catalyst dispersion and stability by controlling the interfacial structure is highly desired. Here we report a new method to deposit metal oxides and metal nanoparticles on graphene and form stable metal-metal oxide-graphene triple junctions for electrocatalysis applicat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature nanotechnology
دوره 6 3 شماره
صفحات -
تاریخ انتشار 2011